Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39.422
1.
Front Cell Infect Microbiol ; 14: 1366908, 2024.
Article En | MEDLINE | ID: mdl-38725449

Background: Metagenomic next-generation sequencing (mNGS) is a novel non-invasive and comprehensive technique for etiological diagnosis of infectious diseases. However, its practical significance has been seldom reported in the context of hematological patients with high-risk febrile neutropenia, a unique patient group characterized by neutropenia and compromised immune responses. Methods: This retrospective study evaluated the results of plasma cfDNA sequencing in 164 hematological patients with high-risk febrile neutropenia. We assessed the diagnostic efficacy and clinical impact of mNGS, comparing it with conventional microbiological tests. Results: mNGS identified 68 different pathogens in 111 patients, whereas conventional methods detected only 17 pathogen types in 36 patients. mNGS exhibited a significantly higher positive detection rate than conventional methods (67.7% vs. 22.0%, P < 0.001). This improvement was consistent across bacterial (30.5% vs. 9.1%), fungal (19.5% vs. 4.3%), and viral (37.2% vs. 9.1%) infections (P < 0.001 for all comparisons). The anti-infective treatment strategies were adjusted for 51.2% (84/164) of the patients based on the mNGS results. Conclusions: mNGS of plasma cfDNA offers substantial promise for the early detection of pathogens and the timely optimization of anti-infective therapies in hematological patients with high-risk febrile neutropenia.


Febrile Neutropenia , High-Throughput Nucleotide Sequencing , Metagenomics , Humans , Metagenomics/methods , Male , Retrospective Studies , High-Throughput Nucleotide Sequencing/methods , Female , Middle Aged , Febrile Neutropenia/microbiology , Febrile Neutropenia/blood , Febrile Neutropenia/diagnosis , Adult , Aged , Young Adult , Adolescent , Aged, 80 and over , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Mycoses/diagnosis , Mycoses/microbiology , Virus Diseases/diagnosis , Virus Diseases/virology
2.
Influenza Other Respir Viruses ; 18(5): e13310, 2024 May.
Article En | MEDLINE | ID: mdl-38725276

BACKGROUND: A variety of viruses can cause acute respiratory infections (ARIs), resulting in a high disease burden worldwide. To explore the dominant viruses and their prevalence characteristics in children with ARIs, comprehensive surveillance was carried out in the Pudong New Area of Shanghai. METHODS: Between January 2013 and December 2022, the basic and clinical information, and respiratory tract specimens of 0-14 years old children with ARIs were collected in five sentinel hospitals in Shanghai Pudong. Each specimen was tested for eight respiratory viruses, and the positive rates of different age groups, case types (inpatient or outpatient) were analyzed. RESULTS: In our study, 30.67% (1294/4219) children with ARIs were positive for at least one virus. Influenza virus (IFV) was the most commonly detected respiratory virus (349/4219, 8.27%), followed by respiratory syncytial virus (RSV) (217/4219, 5.14%), para-influenza virus (PIV) (215/4219, 5.10%), and human coronavirus (HCoV, including 229E, OC43, NL63, and HKU1) (184/4219, 4.36%). IFV was the leading respiratory virus in outpatients aged 5-14 years (201/1673, 12.01%); RSV was the most prevalent respiratory virus in both inpatients (61/238, 25.63%) and outpatients (4/50, 8.00%) for ARI patients aged <6 months old. For PIV, HMPV, HCoV, and HRV, the risk of infection usually was higher among young children. Co-infection with more than two viruses was seen in 3.25% (137/4219). CONCLUSIONS: IFV and RSV played important roles in ARIs among children, but the risk populations were different. There are needs for targeted diagnosis and treatment and necessary immunization and non-pharmaceutical interventions.


Respiratory Tract Infections , Humans , China/epidemiology , Child, Preschool , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Child , Infant , Male , Adolescent , Female , Prevalence , Infant, Newborn , Viruses/isolation & purification , Viruses/classification , Virus Diseases/epidemiology , Virus Diseases/virology , Coinfection/epidemiology , Coinfection/virology , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Acute Disease/epidemiology
3.
Nucleus ; 15(1): 2350178, 2024 Dec.
Article En | MEDLINE | ID: mdl-38717150

Paraspeckles are non-membranous subnuclear bodies, formed through the interaction between the architectural long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) and specific RNA-binding proteins, including the three Drosophila Behavior/Human Splicing (DBHS) family members (PSPC1 (Paraspeckle Component 1), SFPQ (Splicing Factor Proline and Glutamine Rich) and NONO (Non-POU domain-containing octamer-binding protein)). Paraspeckle components were found to impact viral infections through various mechanisms, such as induction of antiviral gene expression, IRES-mediated translation, or viral mRNA polyadenylation. A complex involving NEAT1 RNA and paraspeckle proteins was also found to modulate interferon gene transcription after nuclear DNA sensing, through the activation of the cGAS-STING axis. This review aims to provide an overview on how these elements actively contribute to the dynamics of viral infections.


Virus Diseases , Humans , Virus Diseases/metabolism , Virus Diseases/genetics , Virus Diseases/virology , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
4.
Xenotransplantation ; 31(3): e12851, 2024.
Article En | MEDLINE | ID: mdl-38747130

BACKGROUND: The German Xenotransplantation Consortium is in the process to prepare a clinical trial application (CTA) on xenotransplantation of genetically modified pig hearts. In the CTA documents to the central and national regulatory authorities, that is, the European Medicines Agency (EMA) and the Paul Ehrlich Institute (PEI), respectively, it is required to list the potential zoonotic or xenozoonotic porcine microorganisms including porcine viruses as well as to describe methods of detection in order to prevent their transmission. The donor animals should be tested using highly sensitive detection systems. I would like to define a detection system as the complex including the actual detection methods, either PCR-based, cell-based, or immunological methods and their sensitivity, as well as sample generation, sample preparation, sample origin, time of sampling, and the necessary negative and positive controls. Lessons learned from the identification of porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) in the xenotransplanted heart in the recipient in the Baltimore study underline how important such systems are. The question is whether veterinary laboratories can supply such assays. METHODS: A total of 35 veterinary laboratories in Germany were surveyed for their ability to test for selected xenotransplantation-relevant viruses, including PCMV/PRV, hepatitis E virus, and porcine endogenous retrovirus-C (PERV-C). As comparison, data from Swiss laboratories and a laboratory in the USA were analyzed. Furthermore, we assessed which viruses were screened for in clinical and preclinical trials performed until now and during screening of pig populations. RESULTS: Of the nine laboratories that provided viral diagnostics, none of these included all potential viruses of concern, indeed, the most important assays confirmed in recent human trials, antibody detection of PCMV/PRV and screening for PERV-C were not available at all. The situation was similar in Swiss and US laboratories. Different viruses have been tested for in first clinical and preclinical trials performed in various countries. CONCLUSION: Based on these results it is necessary to establish special virological laboratories able to test for all xenotransplantation-relevant viruses using validated assays, optimally in the xenotransplantation centers.


Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Swine , Humans , Viruses/isolation & purification , Laboratories , Germany , Virus Diseases/diagnosis , Heart Transplantation , Heterografts/virology
5.
J Med Virol ; 96(5): e29660, 2024 May.
Article En | MEDLINE | ID: mdl-38727136

During the coronavirus disease 2019 (COVID-19) pandemic, known viral diseases declined in all ages. By using the current situation as a natural experiment, this study aimed to evaluate whether the change in the incidence of Kawasaki disease (KD) during the COVID-19 pandemic varies with age and whether a specific infectious disease mediates the occurrence of KD. Monthly number of KD patients were extracted from the nationwide inpatient database. Segmented regression analysis was conducted on the interrupted time series data. Additionally, causal mediation analysis was performed to examine the role of viral infections in the changes in the number of KD patients. After the first emergency declaration for COVID-19 in Japan, there was an immediate decrease in the number of KD patients per 100 000 population aged between 6 months and 4 years (immediate change = -2.66; 95% confidence interval [CI]: -5.16 to -0.16) and aged 5-15 years (immediate change = -0.26; 95% CI: -0.49 to -0.04). However, no immediate change was observed in patients under 6 months of age. In the causal mediation analysis for each viral infection, it was found that the decrease in the number of patients with KD was mediated by changes in the number of patients with pharyngoconjunctival fever and infectious gastroenteritis. The current results suggest that viral infections may be one of the etiological agents for KD, while they may not be the main cause in early infancy. Specifically, we found that adenovirus infection and gastroenteritis was closely related to the onset of KD in some areas of Japan.


COVID-19 , Mucocutaneous Lymph Node Syndrome , Humans , Mucocutaneous Lymph Node Syndrome/epidemiology , Mucocutaneous Lymph Node Syndrome/virology , COVID-19/epidemiology , COVID-19/complications , Child, Preschool , Japan/epidemiology , Infant , Child , Adolescent , Incidence , Male , Female , Virus Diseases/epidemiology , Virus Diseases/complications , SARS-CoV-2/pathogenicity
6.
J Immunol ; 212(10): 1523-1529, 2024 May 15.
Article En | MEDLINE | ID: mdl-38709994

The study of S100A9 in viral infections has seen increased interest since the COVID-19 pandemic. S100A8/A9 levels were found to be correlated with the severity of COVID-19 disease, cytokine storm, and changes in myeloid cell subsets. These data led to the hypothesis that S100A8/A9 proteins might play an active role in COVID-19 pathogenesis. This review explores the structures and functions of S100A8/9 and the current knowledge on the involvement of S100A8/A9 and its constituents in viral infections. The potential roles of S100A9 in SARS-CoV-2 infections are also discussed.


COVID-19 , Calgranulin A , Calgranulin B , Inflammation , SARS-CoV-2 , Humans , COVID-19/immunology , SARS-CoV-2/immunology , Inflammation/immunology , Cytokine Release Syndrome/immunology , Virus Diseases/immunology
7.
Sci Immunol ; 9(95): eadq0015, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701192

Initial imprinting by type 1 interferons shapes memory B cell generation in chronic viral infection.


B-Lymphocytes , Humans , Animals , B-Lymphocytes/immunology , Interferon Type I/immunology , Memory B Cells/immunology , Virus Diseases/immunology
9.
Clin Exp Med ; 24(1): 91, 2024 May 02.
Article En | MEDLINE | ID: mdl-38693436

The ubiquitous RNA-processing molecule TDP-43 is involved in neuromuscular diseases such as inclusion body myositis, a late-onset acquired inflammatory myopathy. TDP-43 solubility and function are disrupted in certain viral infections. Certain viruses, high viremia, co-infections, reactivation of latent viruses, and post-acute expansion of cytotoxic T cells may all contribute to inclusion body myositis, mainly in an age-shaped immune landscape. The virally induced senescent, interferon gamma-producing cytotoxic CD8+ T cells with increased inflammatory, and cytotoxic features are involved in the occurrence of inclusion body myositis in most such cases, in a genetically predisposed host. We discuss the putative mechanisms linking inclusion body myositis, TDP-43, and viral infections untangling the links between viruses, interferon, and neuromuscular degeneration could shed a light on the pathogenesis of the inclusion body myositis and other TDP-43-related neuromuscular diseases, with possible therapeutic implications.


DNA-Binding Proteins , Myositis, Inclusion Body , Virus Diseases , Myositis, Inclusion Body/virology , Humans , Virus Diseases/immunology , Virus Diseases/virology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
10.
New Microbiol ; 47(1): 28-32, 2024 May.
Article En | MEDLINE | ID: mdl-38700880

Acute respiratory tract infections (ARI) are common diseases in children and adults and could cause severe infections in high-risk patients, like the immunocompromised and elderly, and are the leading cause of morbidity, hospitalization and mortality. This study aimed to explore the prevalence of respiratory viruses and the clinical impact of single- and multi-infection among hospitalized patients in various age groups. 3578 nasopharyngeal swabs (NPS) were analyzed for pathogen detection of acute respiratory tract infections. 930 out of 3578 NPS were diagnosed positive for at least one respiratory virus. The distribution of viral infections, prevalence and pathogen, differed significantly among age groups. Most RTI are observed in the age group over 65 years (50.6%) with a high SARS-CoV2 prevalence, following by group <5 years (25.6%), where the most frequently detected viruses were RSV, Rhinovirus, FluA-H3, MPV, and AdV. The co-infection rate also varies according to age and, in some cases, especially in older adults, could have severe clinical impact. This study emphasizes that it is important to know and analyze, in all age groups of hospitalized patients, the epidemiology of respiratory viruses, the prevalence of coinfections, and the clinical impact of various pathogens. Furthermore, in a clinical setting, the rapid diagnosis of respiratory infections by means of molecular tests is crucial not only to avoid hospital outbreaks, but also to allow early and optimal treatment to reduce morbidity and mortality.


Coinfection , Respiratory Tract Infections , Humans , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Aged , Adult , Middle Aged , Child, Preschool , Adolescent , Child , Male , Young Adult , Female , Infant , Coinfection/epidemiology , Coinfection/virology , Aged, 80 and over , COVID-19/epidemiology , Prevalence , Hospitalization , SARS-CoV-2 , Virus Diseases/epidemiology , Virus Diseases/virology , Infant, Newborn , Pandemics , Viruses/isolation & purification , Viruses/classification , Viruses/genetics
11.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732074

Early diagnosis of infections in young infants remains a clinical challenge. Young infants are particularly vulnerable to infection, and it is often difficult to clinically distinguish between bacterial and viral infections. Urinary tract infection (UTI) is the most common bacterial infection in young infants, and the incidence of associated bacteremia has decreased in the recent decades. Host RNA expression signatures have shown great promise for distinguishing bacterial from viral infections in young infants. This prospective study included 121 young infants admitted to four pediatric emergency care departments in the capital region of Denmark due to symptoms of infection. We collected whole blood samples and performed differential gene expression analysis. Further, we tested the classification performance of a two-gene host RNA expression signature approaching clinical implementation. Several genes were differentially expressed between young infants with UTI without bacteremia and viral infection. However, limited immunological response was detected in UTI without bacteremia compared to a more pronounced response in viral infection. The performance of the two-gene signature was limited, especially in cases of UTI without bloodstream involvement. Our results indicate a need for further investigation and consideration of UTI in young infants before implementing host RNA expression signatures in clinical practice.


Urinary Tract Infections , Humans , Urinary Tract Infections/genetics , Infant , Prospective Studies , Female , Male , Transcriptome , Infant, Newborn , Gene Expression Profiling/methods , Bacteremia/genetics , RNA/genetics , Virus Diseases/genetics
12.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674036

CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.


Chemokine CX3CL1 , Virus Diseases , Chemokine CX3CL1/metabolism , Humans , Virus Diseases/metabolism , Virus Diseases/immunology , Virus Diseases/virology , Animals , COVID-19/virology , COVID-19/metabolism , COVID-19/immunology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Microglia/metabolism , Microglia/virology , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics
13.
Rev Esp Quimioter ; 37(3): 252-256, 2024 Jun.
Article En | MEDLINE | ID: mdl-38606841

The increased knowledge on virology and the increased potential of their diagnostic has risen several relevant question about the role of an early viral diagnosis and potential early treatment on the management of respiratory tract infections (RTI). In order to further understand the role of viral diagnostic tests in the management of RTI, a panel of experts was convened to discuss about their potential role, beyond what had been agreed in Influenza. The objective of this panel was to define the plausible role of aetiologic viral diagnostic into clinical management; make recommendations on the potential expanded use of such tests in the future and define some gaps in the management of RTI. Molecular Infection Viral Diagnostic (mIVD) tests should be used in all adult patients admitted to Hospital with RTI, and in paediatric patients requiring admission or who would be referred to another hospital for more specialised care. The increased use of mIVD will not only reduce the inappropriate use of antibiotics so reducing the antibiotic microbe resistance, but also will improve the outcome of the patient if an aetiologic viral therapy can be warranted, saving resource requirements and improving patient flows. Implementing IVD testing in RTI has various organizational benefits as well, but expanding its use into clinical settings would need a cost-effectiveness strategy and budget impact assessment.


Respiratory Tract Infections , Humans , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/virology , Virus Diseases/diagnosis , Molecular Diagnostic Techniques , Child
14.
Vet Res ; 55(1): 54, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671518

This article reviews the avian viruses that infect the skin of domestic farm birds of primary economic importance: chicken, duck, turkey, and goose. Many avian viruses (e.g., poxviruses, herpesviruses, Influenza viruses, retroviruses) leading to pathologies infect the skin and the appendages of these birds. Some of these viruses (e.g., Marek's disease virus, avian influenza viruses) have had and/or still have a devasting impact on the poultry economy. The skin tropism of these viruses is key to the pathology and virus life cycle, in particular for virus entry, shedding, and/or transmission. In addition, for some emergent arboviruses, such as flaviviruses, the skin is often the entry gate of the virus after mosquito bites, whether or not the host develops symptoms (e.g., West Nile virus). Various avian skin models, from primary cells to three-dimensional models, are currently available to better understand virus-skin interactions (such as replication, pathogenesis, cell response, and co-infection). These models may be key to finding solutions to prevent or halt viral infection in poultry.


Poultry Diseases , Virus Diseases , Animals , Poultry/virology , Poultry Diseases/virology , Skin/virology , Virus Diseases/veterinary , Virus Diseases/virology
15.
mBio ; 15(5): e0069224, 2024 May 08.
Article En | MEDLINE | ID: mdl-38567955

Defective viral genomes (DVGs) are truncated derivatives of their parental viral genomes generated during an aberrant round of viral genomic replication. Distinct classes of DVGs have been identified in most families of both positive- and negative-sense RNA viruses. Importantly, DVGs have been detected in clinical samples from virally infected individuals and an emerging body of association studies implicates DVGs in shaping the severity of disease caused by viral infections in humans. Consequently, there is growing interest in understanding the molecular mechanisms of de novo DVG generation, how DVGs interact with the innate immune system, and harnessing DVGs as novel therapeutics and vaccine adjuvants to attenuate viral pathogenesis. This minireview focuses on single-stranded RNA viruses (excluding retroviridae), and summarizes the current knowledge of DVG generation, the functions and diversity of DVG species, the roles DVGs play in influencing disease progression, and their application as antivirals and vaccine adjuvants.


Defective Viruses , Genome, Viral , Humans , Defective Viruses/genetics , Virus Replication , Animals , RNA Viruses/genetics , Immunity, Innate , Virus Diseases/virology , Virus Diseases/genetics , Virus Diseases/immunology
16.
Int Wound J ; 21(4): e14870, 2024 Apr.
Article En | MEDLINE | ID: mdl-38629599

To analyse the risk factors affecting wound healing and infection after spinal meningioma resection surgery. The surgical incision healing of 137 patients who underwent spinal meningioma resection at our hospital from January 2021 to January 2024 was analysed. The data collected included physical examination findings, haematological and biochemical measurements, and various scales assessed upon admission and after surgery. These data were then analysed. The surgical wound healing, infection and postoperative complications were statistically analysed. Multiple logistic regression analysis method was used to conduct risk factor analysis on corresponding indicators; the odds ratio and p value of 95% confidence interval were calculated. Factors such as age and smoking history were significantly negatively correlated with wound healing after meningioma resection (odds ratio < 1.000, p < 0.05), while preoperative albumin and platelet count were significantly positively correlated with wound healing (odds ratio > 1.000, p < 0.05). Age, WHO Meningioma Grading, preoperative albumin and preoperative platelet were significantly negatively correlated with wound infection after meningioma resection (odds ratio < 1.000, p < 0.05). The history of virus infection and history of neurological disorders were significantly positively correlated with wound infection (odds ratio > 1.000, p < 0.05). The influence of each factor is different. Age, smoking history, WHO Meningioma Grading, preoperative albumin, preoperative platelets, history of virus infection and history of neurological disorders had the greatest influence on wound healing and infection after meningioma resection.


Meningeal Neoplasms , Meningioma , Surgical Wound , Virus Diseases , Wound Infection , Humans , Meningioma/surgery , Retrospective Studies , Risk Factors , Wound Healing , Meningeal Neoplasms/surgery , Albumins
17.
PLoS One ; 19(4): e0299891, 2024.
Article En | MEDLINE | ID: mdl-38630782

Viruses can infect the brain in individuals with and without HIV-infection: however, the brain virome is poorly characterized. Metabolic alterations have been identified which predispose people to substance use disorder (SUD), but whether these could be triggered by viral infection of the brain is unknown. We used a target-enrichment, deep sequencing platform and bioinformatic pipeline named "ViroFind", for the unbiased characterization of DNA and RNA viruses in brain samples obtained from the National Neuro-AIDS Tissue Consortium. We analyzed fresh frozen post-mortem prefrontal cortex from 72 individuals without known viral infection of the brain, including 16 HIV+/SUD+, 20 HIV+/SUD-, 16 HIV-/SUD+, and 20 HIV-/SUD-. The average age was 52.3 y and 62.5% were males. We identified sequences from 26 viruses belonging to 11 viral taxa. These included viruses with and without known pathogenic potential or tropism to the nervous system, with sequence coverage ranging from 0.03 to 99.73% of the viral genomes. In SUD+ people, HIV-infection was associated with a higher total number of viruses, and HIV+/SUD+ compared to HIV-/SUD+ individuals had an increased frequency of Adenovirus (68.8 vs 0%; p<0.001) and Epstein-Barr virus (EBV) (43.8 vs 6.3%; p=0.037) as well as an increase in Torque Teno virus (TTV) burden. Conversely, in HIV+ people, SUD was associated with an increase in frequency of Hepatitis C virus, (25 in HIV+/SUD+ vs 0% in HIV+/SUD-; p=0.031). Finally, HIV+/SUD- compared to HIV-/SUD- individuals had an increased frequency of EBV (50 vs 0%; p<0.001) and an increase in TTV viral burden, but a decreased Adenovirus viral burden. These data demonstrate an unexpectedly high variety in the human brain virome, identifying targets for future research into the impact of these taxa on the central nervous system. ViroFind could become a valuable tool for monitoring viral dynamics in various compartments, monitoring outbreaks, and informing vaccine development.


DNA Virus Infections , Epstein-Barr Virus Infections , HIV Infections , Substance-Related Disorders , Torque teno virus , Virus Diseases , Male , Humans , Middle Aged , Female , Virome , Epstein-Barr Virus Infections/complications , DNA, Viral/genetics , Herpesvirus 4, Human/genetics , HIV Infections/epidemiology , Virus Diseases/complications , Torque teno virus/genetics , Brain , Hepacivirus/genetics , Substance-Related Disorders/complications
18.
Nat Commun ; 15(1): 3258, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637498

Viral infections remain a major risk in immunocompromised pediatric patients, and virus-specific T cell (VST) therapy has been successful for treatment of refractory viral infections in prior studies. We performed a phase II multicenter study (NCT03475212) for the treatment of pediatric patients with inborn errors of immunity and/or post allogeneic hematopoietic stem cell transplant with refractory viral infections using partially-HLA matched VSTs targeting cytomegalovirus, Epstein-Barr virus, or adenovirus. Primary endpoints were feasibility, safety, and clinical responses (>1 log reduction in viremia at 28 days). Secondary endpoints were reconstitution of antiviral immunity and persistence of the infused VSTs. Suitable VST products were identified for 75 of 77 clinical queries. Clinical responses were achieved in 29 of 47 (62%) of patients post-HSCT including 73% of patients evaluable at 1-month post-infusion, meeting the primary efficacy endpoint (>52%). Secondary graft rejection occurred in one child following VST infusion as described in a companion article. Corticosteroids, graft-versus-host disease, transplant-associated thrombotic microangiopathy, and eculizumab treatment correlated with poor response, while uptrending absolute lymphocyte and CD8 T cell counts correlated with good response. This study highlights key clinical factors that impact response to VSTs and demonstrates the feasibility and efficacy of this therapy in pediatric HSCT.


Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Virus Diseases , Humans , Child , Herpesvirus 4, Human , Risk Factors , Hematopoietic Stem Cell Transplantation/adverse effects
19.
Int J Mol Sci ; 25(7)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38612542

The intricate relationship between viruses and epilepsy involves a bidirectional interaction. Certain viruses can induce epilepsy by infecting the brain, leading to inflammation, damage, or abnormal electrical activity. Conversely, epilepsy patients may be more susceptible to viral infections due to factors, such as compromised immune systems, anticonvulsant drugs, or surgical interventions. Neuroinflammation, a common factor in both scenarios, exhibits onset, duration, intensity, and consequence variations. It can modulate epileptogenesis, increase seizure susceptibility, and impact anticonvulsant drug pharmacokinetics, immune system function, and brain physiology. Viral infections significantly impact the clinical management of epilepsy patients, necessitating a multidisciplinary approach encompassing diagnosis, prevention, and treatment of both conditions. We delved into the dual dynamics of viruses inducing epilepsy and epilepsy patients acquiring viruses, examining the unique features of each case. For virus-induced epilepsy, we specify virus types, elucidate mechanisms of epilepsy induction, emphasize neuroinflammation's impact, and analyze its effects on anticonvulsant drug pharmacokinetics. Conversely, in epilepsy patients acquiring viruses, we detail the acquired virus, its interaction with existing epilepsy, neuroinflammation effects, and changes in anticonvulsant drug pharmacokinetics. Understanding this interplay advances precision therapies for epilepsy during viral infections, providing mechanistic insights, identifying biomarkers and therapeutic targets, and supporting optimized dosing regimens. However, further studies are crucial to validate tools, discover new biomarkers and therapeutic targets, and evaluate targeted therapy safety and efficacy in diverse epilepsy and viral infection scenarios.


Epilepsy , Virus Diseases , Viruses , Humans , Anticonvulsants/therapeutic use , Neuroinflammatory Diseases , Virus Diseases/complications , Virus Diseases/drug therapy , Epilepsy/drug therapy , Epilepsy/etiology , Biomarkers
...